Exam-V Outline-Thermochemistry and Kinetic-molecular Theory: CP Chem-Chapters 17, 13, and 14 KNOW:

1. enthalpy change, specific heat, and calorimetry
a. define, calculate, and use specific heat capacity in problems.
b. perform calorimetry calculations, using $q=m \times C \times \Delta T$.
c. do enthalpy-change problems (stoichiometry using ΔH).
d. do problems involving Hess's law of heat summation.
e. distinguish between temperature (def.), heat (def.), and enthalpy.
f. conceptualize ΔH-i.e., (1) $\Delta H=q_{\mathrm{rxn}}$ (at constant pressure) in $\mathrm{kJ} / \mathrm{mol}$ of substance in question; and (2) sign convention of ΔH, with respect to endo- or exothermic reactions.
2. the kinetic-molecular theory
a. the postulates (assumptions) of the K-M Theory, and the observations they are based upon, as well as the difference between the two.
b. as it applies to solids, liquids, and gases.
3. how to interpret heating curves and phase diagrams.
4. how to do calculations from heating curves, using $q=m \times S \times \Delta T, \Delta H_{\text {fus }}$, and $\Delta H_{\text {vap }}$
5. the relationships between
a. pressure and volume (Boyle's law).
b. volume and temperature (Charles's law).
c. P, V, T, and n-the amt of gas-(Ideal Gas law).
6. Dalton's law of partial pressures.
7. Graham's law of effusion (and diffusion) (CP Only)
8. how to do calculations with all of the above.
9. how to determine what kind of intermolecular forces would be predominant in given substances.
a. dispersion;
b. dipole-dipole ;
c. hydrogen bonding ;
d. none
10. metallic bonding.
11. how and when to use the following formulas and constants:
$q_{\text {sur }}=\boldsymbol{m} \times C \times \Delta T$; specific heats, including those for water:
$C_{\text {ice }}=2.09 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}, C_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}, C_{\text {steam }}=1.84 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$, and other substances*
given in a table (${ }^{*} C P$ only) ; $q_{\tau}=q_{1}+q_{2}+q_{3}+\ldots ; 1 \mathrm{~atm}=101.3 \mathrm{kPa}=760 \mathrm{mmHg}$;
$\mathrm{K}={ }^{\circ} \mathrm{C}+273 ; \quad V_{1} / T_{1}=V_{2} / T_{2} ; \quad P_{1} V_{1}=P_{2} V_{2} ; \quad P V=n R T ; \quad P_{T}=P_{a}+P_{b}+P_{c}+\ldots ;$
gas constant $(R)=0.0821 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{K} ; \quad \Delta H_{\text {vap }}=40.7 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta H_{\text {fus }}=6.00 \mathrm{~kJ} / \mathrm{mol}$, for water, in addition to other substances* given in a table (* CP only) ; AND Graham's law:

$$
\frac{\text { Rate }_{\mathrm{A}}}{\text { Rate }_{\mathrm{B}}}=\frac{\sqrt{\mathcal{M}_{\mathrm{B}}}}{\sqrt{\mathcal{M}_{\mathrm{A}}}}
$$

