Thermochemistry II

Use the data table below, heating curves, dimensional analysis, and $q=m \times$ specific heat $\mathrm{x} \Delta T$ to solve the following problems.

Substance	Specific Heat (J/g $\cdot \mathrm{K}$)	$\begin{aligned} & \hline \text { MP } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \Delta H_{\text {fus }} \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \hline \text { BP } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \Delta H_{\text {vap }} \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$
$\mathrm{Al}_{(s)}$	0.902	660	10.7	***	***
$\mathrm{Al}_{(l)}$	***	***	***	2467	294
$\mathrm{Ca}_{(s)}$	0.653	839	9.3	***	***
$\mathrm{Ca}_{(1)}$	***	***	***	1493	151
$\mathrm{Cu}_{(s)}$	0.385	1083	13.0	***	***
$\mathrm{Cu}_{(1)}$	***	***	***	2567	305
$\mathrm{Fe}_{(s)}$	0.451	1535	14.9	***	***
$\mathrm{Fe}_{(l)}$	***	***	***	2750	351
$\mathrm{Hg}_{(s)}$	***	-38.8	2.33	***	***
$\mathrm{Hg}_{(1)}$	0.138	***	***	357	59.4
$\begin{gathered} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\ \text { ethanol } \end{gathered}$	***	-117	5.02	***	***
$\begin{gathered} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)} \\ \text { ethanol } \end{gathered}$	2.46	***	***	78.0	39.3
$\begin{gathered} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(g)} \\ \text { ethanol } \end{gathered}$	0.954	***	***	***	***
$\mathrm{H}_{2} \mathrm{O}_{(s)}$, ice	2.09	0.00	6.02	***	***
$\mathrm{H}_{2} \mathrm{O}_{(l)}$, water	4.18	***	***	100.00	40.7
$\mathrm{H}_{2} \mathrm{O}_{(g)}$, steam	1.84	***	***	***	***

*** indicates data not available or not applicable

SHOW YOUR WORK FOR EACH OF THE FOLLOWING.
 WRITE YOUR ANSWERS IN JOULES. All processes occur at a constant pressure of 1 atm.

1. Calculate the amount of heat required to change 80.0 g of ice at $-12.0^{\circ} \mathrm{C}$ to steam at $114^{\circ} \mathrm{C}$.
2. How much heat is required to completely melt a $7.8-\mathrm{g}$ piece of copper metal from a $25.0^{\circ} \mathrm{C}$ solid to a liquid with a temperature of $1083{ }^{\circ} \mathrm{C}$?
3. How much heat is released when a $75-\mathrm{kg}$ sample of entirely molten iron, at $1535{ }^{\circ} \mathrm{C}$, is cooled to room temperature ($22^{\circ} \mathrm{C}$)?
4. Calculate the amount of heat required to fully vaporize a $30.00-\mathrm{mL}$ sample of mercury (density $=13.55 \mathrm{~g} / \mathrm{mL}$) starting from $22.0^{\circ} \mathrm{C}$. Is this process endothermic or exothermic?
5. How much heat is needed to change 57.1 mL of liquid ethanol at $20.0^{\circ} \mathrm{C}$ to a gas at $110^{\circ} \mathrm{C}$? (Assume density of ethanol $=0.789 \mathrm{~g} / \mathrm{cm}^{3}$.)
6. Calculate the amount of heat transferred when 2.0 L of water at $25.0^{\circ} \mathrm{C}$ (density $=$ $0.997 \mathrm{~g} / \mathrm{cm}^{3}$) is frozen to $-10.0^{\circ} \mathrm{C}$. Is this process exothermic or endothermic?
