CP Chemistry Mr. Thaler Thermochemistry II

Use the data table below, heating curves, dimensional analysis, and $q = m \times specific heat \times \Delta T$ to solve the following problems.

Substance	Specific Heat (J/g·K)	MP (°C)	$\Delta H_{\rm fus}$ (kJ/mol)	BP (°C)	∆H _{vap} (kJ/mol)
$Al_{(s)}$	0.902	660	10.7	***	***
$\mathrm{Al}_{(l)}$	***	***	***	2467	294
$Ca_{(s)}$	0.653	839	9.3	***	***
$Ca_{(l)}$	***	***	***	1493	151
$Cu_{(s)}$	0.385	1083	13.0	***	***
$Cu_{(l)}$	***	***	***	2567	305
$Fe_{(s)}$	0.451	1535	14.9	***	***
$Fe_{(l)}$	***	***	***	2750	351
$Hg_{(s)}$	***	-38.8	2.33	***	***
$Hg_{(l)}$	0.138	***	***	357	59.4
$C_2H_5OH_{(s)},$	***	-117	5.02	***	***
ethanol					
$C_2H_5OH_{(l)}$,	2.46	***	***	78.0	39.3
ethanol					
$C_2H_5OH_{(g)}$,	0.954	***	***	***	***
ethanol					
$H_2O_{(s)}$, ice	2.09	0.00	6.02	***	***
$H_2O_{(l)}$, water	4.18	***	***	100.00	40.7
$H_2O_{(g)}$, steam	1.84	***	***	***	***

^{***} indicates data not available or not applicable

SHOW YOUR WORK FOR EACH OF THE FOLLOWING. WRITE YOUR ANSWERS IN JOULES. All processes occur at a constant pressure of 1 atm.

- 1. Calculate the amount of heat required to change 80.0 g of ice at $\,^{-}12.0\,^{\circ}\mathrm{C}$ to steam at 114 $^{\circ}\mathrm{C}$.
- 2. How much heat is required to completely melt a 7.8-g piece of copper metal from a 25.0 °C solid to a liquid with a temperature of 1083 °C?
- 3. How much heat is released when a 75-kg sample of entirely molten iron, at 1535 °C, is cooled to room temperature (22 °C)?
- 4. Calculate the amount of heat required to fully vaporize a 30.00-mL sample of mercury (density = 13.55 g/ mL) starting from 22.0 °C. Is this process endothermic or exothermic?
- 5. How much heat is needed to change 57.1 mL of liquid ethanol at 20.0 °C to a gas at 110 °C? (Assume density of ethanol = 0.789 g/cm³.)
- 6. Calculate the amount of heat transferred when 2.0 L of water at 25.0 °C (density = 0.997 g/cm³) is frozen to -10.0 °C. Is this process exothermic or endothermic?